MyoKiddo Mobile Specs for Myopia Control
MyoKiddo Mobile Specs for Myopia Control
1. Priscilla JJ, Verkicharla PK. Time trends on the prevalence of myopia in India - A prediction model for 2050. Ophthalmic Physiol Opt. 2021 May;41(3):466-474. doi: 10.1111/opo.12806. Epub 2021 Apr 16. PMID: 33860952.
2. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016 May;123(5):1036-42. doi: 10.1016/j.ophtha.2016.01.006. Epub 2016 Feb 11. PMID: 26875007.
3. Agarwal D, Saxena R, Gupta V, Mani K, Dhiman R, Bhardawaj A, Vashist P. Prevalence of myopia in Indian school children: Meta-analysis of last four decades. PLoS One. 2020 Oct 19;15(10):e0240750. doi: 10.1371/journal.pone.0240750. PMID: 33075102; PMCID: PMC7571694.
4. Cooper J, Tkatchenko AV. A Review of Current Concepts of the Etiology and Treatment of Myopia. Eye Contact Lens. 2018 Jul;44(4):231-247. doi: 10.1097/ICL.0000000000000499. PMID: 29901472; PMCID: PMC6023584.
5. Xiang ZY, Zou HD. Recent Epidemiology Study Data of Myopia. J Ophthalmol. 2020 Nov 4;2020:4395278. doi: 10.1155/2020/4395278. PMID: 33489329; PMCID: PMC7803099.
6. Naidoo KS, Fricke TR, Frick KD, Jong M, Naduvilath TJ, Resnikoff S, Sankaridurg P. Potential Lost Productivity Resulting from the Global Burden of Myopia: Systematic Review, Meta-analysis, and Modeling. Ophthalmology. 2019 Mar;126(3):338-346. doi: 10.1016/j.ophtha.2018.10.029. Epub 2018 Oct 17. PMID: 30342076.
7. Sánchez-González JM, De-Hita-Cantalejo C, Baustita-Llamas MJ, Sánchez-González MC, Capote-Puente R. The Combined Effect of Low-dose Atropine with Orthokeratology in Pediatric Myopia Control: Review of the Current Treatment Status for Myopia. J Clin Med. 2020 Jul 24;9(8):2371. doi: 10.3390/jcm9082371. PMID: 32722266; PMCID: PMC7465046.
8. Severinsky B, Yahalom C, Florescu Sebok T, Tzur V, Dotan S, Moulton EA. Red-Tinted Contact Lenses May Improve Quality of Life in Retinal Diseases. Optom Vis Sci. 2016 Apr;93(4):445-50. doi: 10.1097/OPX.0000000000000761. PMID: 26657696.
9. Jiang Y, Zhu Z, Tan X, Kong X, Zhong H, Zhang J, Xiong R, Yuan Y, Zeng J, Morgan IG, He M. Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children: A Multicenter Randomized Controlled Trial. Ophthalmology. 2021 Dec 1:S0161-6420(21)00916-7. doi: 10.1016/j.ophtha.2021.11.023. Epub ahead of print. PMID: 34863776.
10. Wang J, Li Y, Musch DC, Wei N, Qi X, Ding G, Li X, Li J, Song L, Zhang Y, Ning Y, Zeng X, Hua N, Li S, Qian X. Progression of Myopia in School-Aged Children After COVID-19 Home Confinement. JAMA Ophthalmol. 2021 Mar 1;139(3):293-300. doi: 10.1001/jamaophthalmol.2020.6239. PMID: 33443542; PMCID: PMC7809617.
11. Mohan A, Sen P, Peeush P, Shah C, Jain E. Impact of online classes and home confinement on myopia progression in children during COVID-19 pandemic: Digital eye strain among kids (DESK) study 4. Indian J Ophthalmol. 2022 Jan;70(1):241-245. doi: 10.4103/ijo.IJO_1721_21. PMID: 34937246.
12. Li Y, Fu Y, Wang K, Liu Z, Shi X, Zhao M. Evaluating the myopia progression control efficacy of defocus incorporated multiple segments (DIMS) lenses and Apollo progressive addition spectacle lenses (PALs) in 6- to 12-year-old children: study protocol for a prospective, multicenter, randomized controlled trial. Trials. 2020 Mar 19;21(1):279. doi: 10.1186/s13063-020-4095-8. PMID: 32188478; PMCID: PMC7081604.
13. López de la Fuente C, Sánchez-Cano AI. Photometric and Colorimetric Evaluation of Phototherapy Instruments for Syntonic Treatment of Visual Anomalies. Optom Vis Sci. 2021 Dec 1;98(12):1355-1365. doi: 10.1097/OPX.0000000000001813. PMID: 34743128.
14. Wang SK, Guo Y, Liao C, Chen Y, Su G, Zhang G, Zhang L, He M. Incidence of and Factors Associated With Myopia and High Myopia in Chinese Children, Based on Refraction Without Cycloplegia. JAMA Ophthalmol. 2018 Sep 1;136(9):1017-1024. doi: 10.1001/jamaophthalmol.2018.2658. PMID: 29978185; PMCID: PMC6142978.
15. Lingham G, Mackey DA, Lucas R, Yazar S. How does spending time outdoors protect against myopia? A review. Br J Ophthalmol. 2020 May;104(5):593-599. doi: 10.1136/bjophthalmol-2019-314675. Epub 2019 Nov 13. PMID: 31722876.
16. Qi Y, Zhang Y, Yu J, Liu W, Xu G. Gradual healing of macular retinoschisis after photodynamic therapy for choroidal neovascularization in pathological myopia eyes. Photodiagnosis Photodyn Ther. 2020 Dec;32:102021. doi: 10.1016/j.pdpdt.2020.102021. Epub 2020 Sep 22. PMID: 32977067. 17. Wu PC, Chen CT, Lin KK, Sun CC, Kuo CN, Huang HM, Poon YC, Yang ML, Chen CY, Huang JC, Wu PC, Yang IH, Yu HJ, Fang PC, Tsai CL, Chiou ST, Yang YH. Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology. 2018 Aug;125(8):1239-1250. doi: 10.1016/j.ophtha.2017.12.011. Epub 2018 Jan 19. PMID: 29371008. 18. Zhang L, Guo D, Xie C, Wen Y, Zhang X, Jin L, Tong J, Shen Y. The effects of colour and temporal frequency of flickering light on variability of the accommodation response in emmetropes and myopes. BMC Ophthalmol. 2021 Feb 17;21(1):88. doi: 10.1186/s12886-021-01856-z. PMID: 33596849; PMCID: PMC7890996. 19. Rucker FJ. The role of luminance and chromatic cues in emmetropisation. Ophthalmic Physiol Opt. 2013 May;33(3):196-214. doi: 10.1111/opo.12050. PMID: 23662955. 20. Landis EG, Yang V, Brown DM, Pardue MT, Read SA. Dim Light Exposure and Myopia in Children. Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):4804-4811. doi: 10.1167/iovs.18-24415. PMID: 30347074; PMCID: PMC6181186. 21. Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR. Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol. 2018 Aug;55(8):6601-6636. doi: 10.1007/s12035-017-0852-4. Epub 2018 Jan 11. PMID: 29327206; PMCID: PMC6041198. 22. Rohringer S, Holnthoner W, Chaudary S, Slezak P, Priglinger E, Strassl M, Pill K, Mühleder S, Redl H, Dungel P. The impact of wavelengths of LED light-therapy on endothelial cells. Sci Rep. 2017 Sep 6;7(1):10700. doi: 10.1038/s41598-017-11061-y. PMID: 28878330; PMCID: PMC5587748. 23. Jiang Y, Zhu Z, Tan X, et al. Effect of repeated low-level red-light therapy in myopia control in children: a multicenter randomized controlled trial. Ophthalmology. December 1, 2021. 24. Hoseini-Yazdi H, Read SA, Alonso-Caneiro D, Collins MJ. Retinal OFF-Pathway Overstimulation Leads to Greater Accommodation-Induced Choroidal Thinning. Invest Ophthalmol Vis Sci. 2021 Oct 4;62(13):5. doi: 10.1167/iovs.62.13.5. PMID: 34636878; PMCID: PMC8525845. 25. Woodman EC, Read SA, Collins MJ. Axial length and choroidal thickness changes accompanying prolonged accommodation in myopes and emmetropes. Vision Res. 2012 Nov 1;72:34-41. doi: 10.1016/j.visres.2012.09.009. Epub 2012 Sep 24. PMID: 23017772. 26. Jiang Y, Zhu Z, Tan X, Kong X, Zhong H, Zhang J, Xiong R, Yuan Y, Zeng J, Morgan IG, He M. Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children: A Multicenter Randomized Controlled Trial. Ophthalmology. 2021 Dec 1:S0161-6420(21)00916-7. doi: 10.1016/j.ophtha.2021.11.023. Epub ahead of print. PMID: 34863776. 27. Schmid SR, Höhn C, Bothe K, Plamberger CP, Angerer M, Pletzer B, Hoedlmoser K. How Smart Is It to Go to Bed with the Phone? The Impact of Short-Wavelength Light and Affective States on Sleep and Circadian Rhythms. Clocks Sleep. 2021 Oct 28;3(4):558-580. doi: 10.3390/clockssleep3040040. PMID: 34842631; PMCID: PMC8628671. 28. Sharpe LT, Fach CC, Stockman A. The spectral properties of the two rod pathways. Vision Res. 1993 Dec;33(18):2705-20. doi: 10.1016/0042-6989(93)90230-t. PMID: 8296467. 29. Severinsky B, Yahalom C, Florescu Sebok T, Tzur V, Dotan S, Moulton EA. Red-Tinted Contact Lenses May Improve Quality of Life in Retinal Diseases. Optom Vis Sci. 2016 Apr;93(4):445-50. doi: 10.1097/OPX.0000000000000761. PMID: 26657696.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926275/
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202100350RR